He xamin metal (III) - Penta fluoro oxovana dates (IV)

A. DEMŠAR and P. BUKOVEC

Department of Chemistry, University of Ljubljana, 61000 Ljubljana, Yugoslavia

Received October 15, 1977

Fluorocomplexes of VO^{2+} are mainly studied with alkali and ammonium ions [1-5], where the stoichiometries VOF_5^{3-} , VOF_4^{2-} , $VOF_4 \cdot H_2O^{2-}$ and $V_2O_2F_7^{3-}$ were found. With larger cations only the preparation of $[(C_4H_9)_4N]_3VOF_5 \cdot 6HF$ was reported [6].

The complexes of the general formula $[M(NH_3)_6]$ - $[VOF_5]$, (M = Cr, Co, Rh) were prepared by the reaction of VOF_2 with $[M(NH_3)_6]Cl_3$ in 20% HF. The products are insoluble in water and in aqueous HF solution, and were precipitated almost quantitatively. Their X-ray powder patterns (Guinier de-Wolf camera, $CuK\alpha$ radiation), were indexed on the basis of the cubic unit cell and the cell parameters refined by the least-squares method. Crystallographic data, together with analytical results, are given in Table I and Table II respectively.

These complexes are also isostructural to $[Cr(NH_3)_6]MF_6$, (M = Mn, Fe), which crystallize in cubic space group Pa3 with octahedral cations and anions, arranged as Na⁺ and Cl⁻ ions in NaCl lattice [7]. Each fluorine atom forms three hydrogen bonds, causing a considerable deformation of the Cr-NH₃ tetrahedron. These facts were also confirmed by vibrational spectroscopy [8]. For hexaminchromium—hexafluoromanganate(III) the observed equivalence of six Mn-F bonds (S₆ site symmetry) was explained by dynamic Jahn—Teller effect. The high crystal symmetry of our compounds can only be interpreted by the statistical orientation of the VOF₅⁵- octahedra.

Infrared spectra (Table III), recorded on a Perkin-Elmer 521 instrument, bear a close resemblance to those of [M(NH₃)₆] M'F₆ series [8]. Most fundamental frequencies of the hexaminmetal ions are split.

TABLE II. Observed Spacings, Intensities and Indices of Reflections of [Rh(NH₃)₆] [VOF₅].

d (Å)	I_{rel}	h k l		
5.79	5	111		
5.00	10	200		
3.53	8	220		
3.01	5	3 1 1		
2.89	6	2 2 2		
2.67	5	3 2 1		
2.355	4	3 3 0, 4 1 1		
2.297	4	3 3 1		
2.24	6	4 2 0		
2.13	4	3 3 2		
2.042	7	4 2 2		
1.960	2	5 1 0, 4 3 1		
1.922	4	3 3 3		
1.763	5	440		
1.665	8	4 4 2, 6 0 0		
1.579	7	6 2 0		
1.504	8	6 2 2		
1.440	2	444		
1.398	2	7 1 1, 5 5 1		
1.385	6	6 4 0		
1.359	2	721,633,552		
1.334	5	6 4 2		
1.300	1	7 3 1, 5 5 3		
1.269	1	651,732		
1.248	1	800		
1.210	1	8 2 0		
1.117	1	8 2 2, 6 6 0		

 $\nu(N-H)$, however, is also broadened. Additionally, overtones and combination bands appear. This all accounts for the presence of hydrogen bonding between N-H and the anion.

The main feature of IR spectra of all vanadyl complexes is a strong V-O stretching absorption band, which appears at 985 \pm 50 cm⁻¹ [9]. It was shown that the $\nu(V-O)$ frequency primarily depends on the amount of $p\pi$ -d π donation from oxygen to metal. The electron-accepting capacity of the vanadium is considerably striken by the presence of fluoride ions, which delocalize their π -bonding electrons into empty orbitals of vanadium. Two

TABLE I. Analytical and Crystallographic Data.

	Colour	% V*	% NH ₃ *	% F*	a (Å)	D _m (gcm ⁻³)	D _c (gcm ⁻³)	Z
[Cr(NH ₃) ₆] [VOF ₅]	Yellow-Green	16.44(16.11)	31.69(32.33)	30.44(30.05)	10.015(3)	2.20	2.091	4
$[Co(NH_3)_6][VOF_5]$	Yellow	15.89(15.76)	30.60(31.61)	29.80(29.41)	9.891(1)	2.18	2.218	4
[Rh(NH ₃) ₆][VOF ₅]	Light Blue	13.99(13.88)			9.980(5)	2.39	2.453	4

^{*}Found(calc.).

TABLE III. Frequencies (cm⁻¹) and Assignments of Infrared Bands.

	$[Co(NH_3)_6][VOF_5]$	$[Cr(NH_3)_6][VOF_5]$	$[Rh(NH_3)_6][VOF_5]$
	(3300vs,b	3320vs,b	3300vs,b
ν(N-H)	3250vs,sh	3250vs,sh	3120vs,sh
	3170vs,sh	3160vs,sh	
	3125v,sh		
$2\delta_{sim}(NH_3)$	∫ 2715m	2565w	2690vw
	2620w		2608w
$\rho(\text{NH}_3) + \delta_{\text{sim}}(\text{NH}_3)$	(2200w	2105w	2260vw
	{		2180w
	2090vw		
0-0W \	∫ 1750w		1750w
2ρ(NH ₃)	1665m,sh		1685m,sh
$\delta_e(\mathrm{NH_3})$	$\int 1625$ m,sh	1640vs	1605s
	1595s	1600vs,sh	1560m,sh
$\delta_{sim}(NH_3)$	∫ 1335vs	1320vs,sh	1328vs
		1300vs	
	1140vw	1150vw	1150vw
		1085vw	
₽(V−O)	905vs	907vs	913vs
$\rho(\mathrm{NH_3})$	(885s	805vs	895vs
	₹ 805m	725m	820m
ν (Me-N), ν (V-F)	∫ 495vs,sh	490vs	490vs
	\ 470vs	460vs	470vs
0(MeN ₆) 0(VOF ₅ ³	340s,sh		320s
δ(VOF ₅ ³ -	310vs	325m	300s

 $\nu(V-O)$ frequencies, at 947 and 937 cm⁻¹, were found for $(NH_4)_3VOF_5$ [9].

In the present study, extremely low V-O stretchings were found. Assuming the same situation as in $[Cr(NH_3)_6]MF_6$ [7], three hydrogen bonds are formed to each ligand, causing a decrease in their donating ability. The reduced donation of fluorides should increase the $\nu(V-O)$ frequency, whereas lowering of the V-O bond order should cause a decrease of the same frequency.

We may conclude therefore, that multiple hydrogen bonding considerably affects $p\pi - d\pi$ donation by the oxygen, with a decrease of $\nu(V-O)$ frequency of at least 25 cm⁻¹, as compared to $(NH_4)_3VOF_5$.

References

- J. Selbin and L. H. Holmes Jr., J. Inorg. Nucl. Chem., 24, 1111 (1962).
- 2 G. Pausewang and W. Rüdorf, Z. Anorg. Allg. Chem., 364, 69 (1969).
- 3 A. E. Baker and M. M. Haendler, *Inorg. Chem.*, 1, 127 (1962)
- 4 G. Pausewang, Z. Anorg. Allg. Chem., 381, 189 (1971)
- 5 P. L. Davidović, L. G. Harlamova and L. V. Samarec, Koordinacionnaja Himija, 3, 850 (1977).
- 6 J. Selbin, J. Inorg. Nucl. Chem., 31, 433 (1969).
- 7 K. Wieghardt and J. Weiss, Acta Cryst., B28, 529 (1972).
- 8 K. Wieghardt and H. Siebert, J. Mol. Structure, 7, 305 (1971).
- J. Selbin, L. H. Holmes, Jr. and S. P. McGlynn, J. Inorg. Nucl. Chem., 25, 1359 (1963).